

Reducing Power Consumption by Incorporating Flash Memory into RAID Storage Arrays

Rosie Wacha, Scott Brandt Computer Science

Motivation

- Hard Disk Drives (disks) consume 27% of power in data centers¹
- Solid State Drives (SSDs) are flash memory storage devices now available in large sizes
- Up to 512 GB (Toshiba Q2 2009)
- SSDs consume less power than disks
- Use a small number of SSDs to reduce power and maximize performance improvement

Power Savings with SSD

- Synthetic, constant-bandwidth workload
- 1.5 MB/s read workload
- Power consumption to run the workload on disk, SSD, or a fraction of data on each
- Power is significantly reduced using SSD

Replace Parity Disk with SSD

- Small writes are faster because SSD read is fast
- Small writes use half as many disk accesses
- Parity write occurs in parallel with disk write
- Parity device power is reduced by an order of magnitude
- 1.5 MB/s write workload
- Especially significant in smaller stripes
- Each stripe has one parity device

RAID 4 (Redundant Array of Independent Disks)

- Stores redundant data to provide reliability
- Parity (exclusive-or) computed across data blocks and stored on parity device
- Protects against one or more hardware failures
- Stripes data to improve performance
- Data is broken into chunks and each chunk is stored on a stripe
- Parity is computed across the stripe
- Parallel access increases throughput
- Slower for small writes due to parity read and update

	Intel X25-M SSD	WD VelociRaptor
Cost	\$749.99	\$179.99
Capacity	160 GB	150 GB
\$/GB	\$4.69	\$1.20
Seek	0.00085 ms	4.2-4.7 ms
Throughput (Read / Wr)	250 / 70 MB/s	120 / 120 MB/s
Power	≤ 0.5 W	≤ 6 W

Simulation Methodology

- Synthetic workload
- Data read or written at a constant bandwidth
- Rate is serviceable in all configurations (random and sequential)
- Simulate this workload
 - On either SSD or disk
- Compare power for each configuration

Performance Impact on RAID 4 with SSD

- Count number of disk writes under each configuration
- Smaller is better
- Improvement is most significant for smaller stripes
 - Each stripe has one parity device
 - With smaller stripes, a larger fraction is parity

Summary

- Replacing parity disk with SSD reduces power
- Cost to add SSD is fairly low
- Future work investigates performance impact through simulation

Acknowledgments

Research funded by the Institute for Scalable Scientific Data Management (ISSDM). LANL mentors and collaborators: John Bent, Gary Grider, and James Nunez.